Локальные GPT-like модели для разработки шаблонов Zennoposter

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
Многие из нас неплохо знакомы с различными моделями ИИ, которые в контексте использования с софтом Zenno отлично подходят для задач генерации контента. Большие языковые модели (LLM, Large Language Models) некоторое время назад совершили мощный рывок, ставший широко известным с появлением ChatGPT. Такие GPT-like модели шикарно подходят для генерации человекоподобных текстов, однако, ввиду их других сопутствующих достоинств и «сообразительности», на сегодня у них существует большое количество иных применений. Например, они отлично подходят в качестве репетиторов, помощников и ассистентов если вы изучаете иностранные языки, или же учитесь программированию. Иными словами, во многих профессиях и конкретных делах-задачах можно оптимизировать (улучшить/ускорить/масштабировать) свою работу/задачу с помощью LLM. Разработка шаблонов для ZennoPoster и ZennoDroid – не исключение. Собственно, именно эту тему мы и затронем в этой статье – как можно использовать большие языковые модели себе в помощь при работе с Zenno.

Акцент будем делать на использовании опенсорсовских LLM, которые можно просто запустить на своём компьютере или сервере. Причины выбора такого акцента:
  • Приватность (не отправляем никакие данные сторонним организациям)
  • Низкая стоимость вычислений (платим, по сути, только за электричество, если запускаем на своём железе)
  • Меньший уровень цензуры (при соответствующей необходимости)
Передовые LLM, такие как GPT и Claude, конечно, существенно «умнее» существующих на данный момент опенсорсовских решений, но и ограничения у них соответствующие. Уверен, далеко не каждый разработчик шаблонов готов на бенефиты от использования ИИ-ассистента, если обратная сторона – необходимость отправлять контекст своих задач и проектов в сторонним людям/компаниям. Для некоторых задач могут понадобится большие объемы токенов, что может вылететь опять же в копеечку, в сравнении с локальным опенсорсом.

Плюс к этому, даже если вы используете LLM только для генерации текстового контента, открытые модели так же весьма интересны в точки зрения себестоимости и меньшей зацензурированности.

Способы использования

О чём будем говорить – понятно, теперь давайте чуть больше конкретики. Какие именно юзкейсы LLM сходу можно придумать для разработки шаблонов?

Планирование проекта на начальном этапе.
Более-менее крупный шаблон или проект всегда надо с чего-то начинать, и в этом плане LLM может помочь ускорить и улучшить проектирование. Пишем краткий план чего хотим сделать, закидываем в промпт модельке с дополнительной затравкой по типу «делаю такую вот программу, помоги с проектированием структуры проекта». Базовое создание Zenno-шаблонов представляет собой визуальное программирование, поэтому контекст для промптов (запросов/затравок к LLM) можно использовать соответствующий.
Если вы разрабатываете шаблоны на заказ, примерно то же самое можно делать с ТЗ заказчика.

Генерация и отладка C#-сниппетов.
Почти все LLM весьма хороши в кодинге, особенно в кодинге небольших выделенных задач, для которых и используются C#-сниппеты в Zenno. Даже если модель написала неподходящий код, или выдающий ошибку код – всегда есть возможность сказать об этом модели (или скормить текст ошибки), чтобы она пофиксила проблему.

Понимание кода и сниппетов.
Для своих шаблонов на форуме можно найти множество как полезных сниппетов, так и крупных модулей кода (например, для блока «Общего кода» или целых внешних dll-библиотек). Если вы не знаете, что делает тот или иной код с форума, и будет ли конкретно в вашем случае полезен – вы можете скормить его LLM и попросить объяснить, вплоть до подробного разбора буквально каждой строчки. Языковые модели прекрасно с этим справляются.

Анализ информации/документации.
LLM отлично справляются с суммаризацией информации.
Понадобилось добавить в шаблон работу с каким-нибудь новым/непонятным для вас API? Скормите LLM документацию и примеры из этого API и попросите суммаризировать или кратко объяснить основные моменты. Или сразу написать в виде C#-кода имплементацию для своего шаблона.
Хотите всегда быть в курсе новых полезных решений с форума zennolab, актуальных вопросов и проблем Zenno, способов обхода и т.д., что обсуждается на форуме – но не хочется каждый день заходить на форум и всё это мониторить? Напишите шаблон-парсер форума, который будет отправлять контент в LLM для суммаризации LLM, а конечный результат выводить/отправлять вам регулярно в виде своеобразного фида.

Это несколько основных вариантов, которые в той или иной степени использую сам, и с которых можно начать, если вы ещё этим не занимались. Однако, помимо этих, почти наверняка можно найти ещё приличное количество юзкейсов, особенно если основываться на конкретно ваших индивидуальных потребностях и проектах.
Резюмируя, использование LLM в качестве помощника в таких задачах экономит ваше время и/или повышает вашу эффективность.

Какие бывают LLM

Теперь немного подробнее разберём, какие бывают большие языковые модели.

Платные-закрытые и бесплатные-опенсорсные.
Основные различия этих в нашем Zenno-контексте мы уже немного разобрали выше. Дополнительно стоит сказать, что неплохих опенсорс-моделей нет так уж и мало, а уж файн-тюнов для них (дообученых «модификаций» под конкретные задачи/сферы знаний) – великое множество. Пожалуй, наиболее интересные экземпляры – семейство моделей Llama. Их тренирует крупный IT-гигант (которым рулит один известный Марк), у которого ресурсов достаточно, чтобы иметь возможность создавать передового уровня модели. И тесты последней Llama это доказывают. В общем и целом, она не дотягивает до передовых закрытых моделей, но звание лучшей открытой явно принадлежит ей (по крайней мере на момент написания статьи). Её мы и будем запускать в следующей главе.

По количеству параметров – «тяжелые» и «лёгкие».
Почти всегда в названиях опенсорс-моделей вы будете видеть подобные приписки: «7B», «13B», «34B», «70B». Это обозначение количества их параметров, в миллиардах (B – billions). Как правило, чем больше параметров – тем более моделька «умна». Однако, вместе с тем, тем более она ест памяти компьютера. Например, для инференса (запуска и использования) модели с 7 миллиардами параметров в f16 требуется примерно 14 ГБ видеопамяти. С остальными размерами такое же соотношение (т.е. для 13B – около 26 ГБ видеопамяти, для 34B – около 68 ГБ). Для потребительского железа цифры жуткие, но, к счастью, есть такая штука, как квантизация. Если сильно упростить – это что-то типа сжатия модельки, сильно выигрываем в размере, мало проигрываем в качестве ответов. Так, например, квантованная до Q8 модель 7B занимает чуть больше 7 ГБ видеопамяти (потери по качеству ответов LLM при таком квантовании почти нулевые).

Желательно запускать модели в видеопамяти, т.е. в памяти видеокарты (в идеале от NVidia), так ответы от LLM будут наиболее быстрые. Однако, более-менее крупные модели (34B и выше) таким образом особо не позапускаешь из-за того, что в потребительских видеокартах довольно мало видеопамяти (исключение – если у вас есть парочка 3090 или 4090). Тем не менее, модель можно помещать и в оперативную память, которая дешевая и которую можно поставить довольно большое количество. Однако, в этом случае вычисления будут происходить на CPU, плюс пропускная способность ОЗУ значительно ниже таковой у видеопамяти. Поэтому скорость работы будет значительно ниже при использовании больших моделей. Ориентировочный пример: если модель N при инференсе на GPU и видеопамяти выдаст ответ в виде текста на 3 абзаца буквально за 5-10 секунд, то при инференсе на CPU и ОЗУ она же выдаст такой же ответ за более чем минуту, набирая его со скоростью среднего печатающего человека.
Также ныне в софте для запуска LLM нередко есть возможность часть слоев модели загрузить в видеопамять, часть – в ОЗУ, этакий компромиссный вариант.
Если вдруг вы однажды будете рассматривать покупку потребительской видеокарты именно с целью локального инференса LLM – основных критерия по сути только 2: количество видеопамяти и производитель NVidia (для карт AMD сейчас слишком много проблем и ограничений, к сожалению). Относительная мощность GPU мало влияет, основной цимес в памяти и её пропускной способности. Поэтому оптимальные карты в данном случае – 3060 на 12 ГБ и 4060ti на 16 ГБ. Дальше имеют смысл только 3090 или 4090 (24 ГБ) и специализированные карточки.

Базовые и заточенные на инструкции.
Нередко опенсорсные модели выпускают в нескольких вариантах, чаще всего это Base и Instruct-модели. Первая – дефолтная модель, подходящая для любых целей. Вторая – дообученная на инструкциях базовая модель, из-за чего лучше понимает именно инструкции (соответственно, похожу в болтовне и других задачах). В наших Zenno-задачах в амплуа ассистента и помощника по коду – почти всегда лучше себя показывают Instruct-версии моделей. Как и размер, приписку «Instruct» почти всегда можно встретить в названии опенсорс-модели, поэтому определять и искать их легко.

Размер контекстного окна.
Контекстное окно – это ваш «чатик» с LLM, какого размера он может быть в токенах. Чем более большое контекстное окно поддерживает модель, тем больше в неё можно отправить информации виде промптов, тем больше контекста вашей задачи/проблемы она может учитывать при ответах. Однако, чем больше контекста вы закидываете в это окно (чем больше текста в вашем диалоге/чатике) – тем больше требуется вычислений модели и тем больше кушается оперативной памяти (сверх инференса из пункта выше). Также, в слишком большой куче текста модель куда хуже ориентируется, хуже вычленяет важные моменты и факты (в большинстве случаев). Поэтому, например, вне зависимости от поддерживаемого моделью размера контекстного окна, всегда стоит для 1 одной задачи использовать 1 «чатик», для каждой новой обязательно начинать новый диалог.

Установка и запуск локальной LLM

Для локального запуска моделей нам нужен соответствующий софт. Рассмотрим локальное использование LLM на примере «LM Studio». Официальный сайт, где можно как почитать про программу, так и скачать: https://lmstudio.ai/
Доступны версии для Windows и Linux (из требований – поддержка процессором AVX2), для Mac на M1 и выше. Если у вас видеокарта от AMD, есть отдельная версия программы тут: https://lmstudio.ai/rocm Улучшенная производительность для таких карт, но билд экспериментальный, могут быть проблемы/баги.
И некоторый дисклеймер – конкретно «LM Studio» проприетарный софт, и хоть они пишут на сайте, что не логируют ничего пользовательского, соответствующие риски есть. Поэтому, если необходима гарантировано приватное взаимодействие с моделью, используйте опенсорсные решения. В данной статье «LM Studio» выбрана как наиболее простая и понятная в использования для среднего пользователя программа.

Как работать с моделями в этой программе – рассмотрим в видео.



Использование в качестве локального сервера для своих шаблонов

Помимо прочего мы видим, что у «LM Studio» есть функционал локального сервера, со стандартной для индустрии OpenAI-форматом API (линк на документацию).
Это значит, что если вы уже используете в своих шаблонах GPT или другие нейронки через API - вы можете переключить генерацию на локальную модель буквально за пару минут.
Для этого нужно:
  1. Загрузить любую подходящую модель в «LM Studio» (в самом верху, так же, как с чатом)
  2. В разделе программы «Local Server» нажать на «Start Server»
  3. В своих Zenno-шаблонах заменить URL API на « » и убрать ненужные параметры, если таковые есть (например, API-ключ и название модели по понятным причинам передавать не нужно)
Вот и всё, так просто можно перебросить использование API платных нейронок на локальную модель, если у вас на сервере есть свободная память или выделенный GPU. Касательно моделей - маленькая опенсорсная Llama 3 8B вполне сравнима с GPT-3.5-Turbo, а то и на уровне с GPT-4-0613 (по данным слепого тестирования на чат-бот арене).

Улучшение ответов техниками промптинга

Запросы к LLM обычно называют промптами (от англ. prompt – затравка, запрос, инструкция к модели).
Из-за устройства и принципа работы больших языков моделей, их ответ на ваш запрос (промпт) довольно прилично зависит от того, как именно вы его сформулировали. Иными словами, если достаточно хорошо и подробно сформулировать вопрос, можно получить гораздо более качественный и точный ответ, чем если просто обычным образом задать вопрос. Нередко в ситуациях, когда подразумевается достаточно чёткий и однозначный ответ (например, код, делающий именно то, что надо без ошибок), от того, как написан промпт, напрямую зависит то, что получится в результате – либо неработающая муть, либо именно то, что требуется.

Вот пара наиболее популярных и простых, но тем не менее крайне эффективных техник.

Chain of Thought (цепочка размышлений)
Если в промпте попросить модель думать пошагово при ответе, то это может заставить её декомпозировать задачу, подробно описать каждый шаг перед ответом. Как правильно это значительно улучшает качество ответа и уменьшает галлюцинации.
Примеры фраз: «think step-by-step», «provide me your chain of thoughts»

Emotional prompting (запросы с эмоциональной окраской)
Упоминания о сильной важности ответа модели на вопрос в тексте промпта зачастую повышают качество ответа. К запросам, например, добавляют, что от качества ответа зависит судьба вашей или чьей-то ещё жизни.
Примеры фраз: «You'd better be sure», «This is very important to my career»

Выше я привел примеры фраз на английском языке, но мы же собираемся задавать вопросы на нашем языке? На самом деле крайне желательно писать промпты именно на английском, в большинстве случаев это даёт лучший результат. Все модели лучше всего понимают и отвечают на английском языке, даже если учились на множестве других тоже. Это актуально для любых моделей просто потому, что во всех трейнинг-сетах данных на английском большинство, просто потому что данных в мире интернете подавляющее большинство именно на этом языке. Даже китайские модели, тренируемые для использования на внутреннем рынке, ныне всё ещё лучше работают на английском, чем на китайском.

У опенсорс-моделей этот гэп значительно больше, чем у передовых закрытых. Соответственно, в среднем промпты даже на корявом английском будут давать лучше результаты, чем на хорошем русском. Поэтому если вы не знаете языка, имеет смысл закидывать в переводчик свой промпт и скармливать модели именно перевод, а потом переводить ответ. Тут, кстати, можно использовать саму модель в качестве переводчика (главное, перевод на вход делать отдельным чатом, или же стирать его изначальную формулировку на своем языке).

Так как мы рассматриваем опенсорс-модели, также стоит отметить, что промптинг для них может отличаться как от закрытых моделей, так и от других открытых. То есть, например, одна техника промптинга может давать отличные результаты с одной моделью, но с другой – не давать почти никакого дополнительного эффекта. Поэтому эксперименты – наше всё.

Помимо обычных диалоговых ролей User (вы, пользователь) и Assistant (модель) есть возможность задавать так называемый системный промпт (по сути самое первое сообщение в диалоге, в котором для модели можно задать её назначение и дополнительная информация). В него полезно помещать желаемую роль модели, важную информацию по сфере будущих запросов и техники промптинга. Пример системного промпта для чата, в котором планируем спрашивать модель за C#-сниппеты:
You are a professional C#-developer. Please, pay attention. Think step-by-step, evaluate yourself and provide me your chain of thoughts. Please, ask questions for clarification before generating your answer.
Техник и подходов к промптингу довольно много, и в целом к моменту написания статьи промптинг вылился в отдельную большую дисциплину. Вот пара ссылок, где вы сможете как в целом больше узнать про искусство запросов к моделям, так и найти множество конкретных примеров:
https://www.promptingguide.ai/ru/introduction/basics
https://docs.google.com/spreadsheets/d/19jzLgRruG9kjUQNKtCg1ZjdD6l6weA6qRXG5zLIAhC8/edit?usp=sharing
https://docs.anthropic.com/en/prompt-library/library


Личные юзкейсы в задачах на Zenno

Так как это статья в рамках конкурса кейсов, в этой главе расскажу о личных примерах использования, которые можно вынести за скобки рабочих проектов.

Конкретно я все Zenno-проекты пишу почти полностью в коде в Visual Studio, поэтому большая часть моих юзкейсов связана с кодингом на C#. В частности, оптимизация и рефакторинг старого кода, создание тестов, написание (генерация LLM-кой) относительно простых методов и сущностей, для которых не требуется знания и структуры всего основного проекта и целиком фреймворка Zenno.
Далее под спойлером небольшой пример того, как мне ответила модель (это была CodeLlama Instruct 7B), когда я скормил ей один из своих методов расширения.
Промпт:
How do you think, how it's possible to optimize that method:
C#:
public static bool IsFreeFromPopups (this HtmlElement elCheck)
{
    var tab = elCheck.ParentTab;

    int x = elCheck.DisplacementInTabWindow.X + elCheck.Width / 2;
    int y = elCheck.DisplacementInTabWindow.Y + elCheck.Height / 2;

    var elFromPoint = tab.GetElementFromPoint(x, y);

    if (elFromPoint.OuterHtml == elCheck.OuterHtml)
    {
        return true;
    }
    return false;
}
Ответ модели:
The `IsFreeFromPopups` method is a simple method that checks if an element is free from pop-ups by checking the element's position and comparing it to the position of another element. However, there are some potential issues with this method:

1. The method assumes that the element being checked is in the same tab as the parent tab. If the element is not in the same tab, the method will return incorrect results.
2. The method uses `GetElementFromPoint` to get an element from a point on the screen. However, this method can be slow and may not always work correctly.
3. The method compares the outer HTML of the two elements to determine if they are the same. This may not always be accurate, as the outer HTML of two elements can be different even if they represent the same element.

To optimize this method, you could consider the following improvements:

1. Use a more robust method for checking if an element is in the same tab as the parent tab, such as comparing the `TabId` property of the two tabs.
2. Use a faster method for getting an element from a point on the screen, such as using the `GetElementFromPoint` method with a higher `ZIndex` parameter.
3. Use a more robust method for comparing the outer HTML of two elements, such as comparing the `Id` property of the two elements or using a library like `HtmlAgilityPack` to parse and compare the HTML code.

Here is an example of how you could optimize the method:
C#:
public static bool IsFreeFromPopups (this HtmlElement elCheck)
{
    var tab = elCheck.ParentTab;

    int x = elCheck.DisplacementInTabWindow.X + elCheck.Width / 2;
    int y = elCheck.DisplacementInTabWindow.Y + elCheck.Height / 2;

    var elFromPoint = tab.GetElementFromPoint(x, y, ZIndex.Max);

    if (elFromPoint != null && elFromPoint.Id == elCheck.Id)
    {
        return true;
    }
    return false;
}
____________
Как видим, модель достаточно подробно и ясно ответила на вопрос и предложила изменения в коде. Первые два поинта оказались не особо релевантными, но по тексту видно, что лишь потому, что модель по понятным причинам не в курсе применения и особенностей работы Zenno и его API. Однако третий поинт был абсолютно релевантен, модель указала на мои косяки и исправила их.
Также какие-то отдельные вещи типа написания регулярок тоже стал отдавать на откуп LLM, они их пишут тупо лучше меня. :-)
В данном случае мне надо было распарсить значения bounds по переменным у элемента в ZennoDroid, но мне лень было писать для этого код или регулярку.

Промпт:
Please, write code that parsing integer values "x1", "y1", "x2", "y2" via C#. Input string:
string bounds = "[90,875][989,1015]";

Ответ модели:
Here is a simple C# program that parses the input string and extracts the integer values for "x1", "y1", "x2", and "y2":
C#:
using System;
using System.Text.RegularExpressions;

class Program
{
    static void Main()
    {
        string bounds = "[90,875][989,1015]";
        MatchCollection matches = Regex.Matches(bounds, @"\[(\d+),(\d+)\]");

        if (matches.Count == 2)
        {
            int x1 = int.Parse(matches[0].Groups[1].Value);
            int y1 = int.Parse(matches[0].Groups[2].Value);

            int x2 = int.Parse(matches[1].Groups[1].Value);
            int y2 = int.Parse(matches[1].Groups[2].Value);

            Console.WriteLine("x1: " + x1);
            Console.WriteLine("y1: " + y1);
            Console.WriteLine("x2: " + x2);
            Console.WriteLine("y2: " + y2);
        }
        else
        {
            Console.WriteLine("Invalid input format.");
        }
    }
}
This program uses regular expressions to find all occurrences of the pattern "\[(\d+),(\d+)\]" in the input string. This pattern matches a left square bracket, followed by one or more digits (captured as group 1), a comma, one or more digits (captured as group 2), and a right square bracket.

The program then checks if there are exactly two matches. If so, it parses the captured groups as integers and prints them out. If not, it prints an error message.
____________
Конкретно данный случай внезапно оказался для меня особенно полезным, так как я вдруг узнал о существовании групп у регулярок. Регулярки я использую в проектах довольно редко, поэтому знания у меня по ним поверхностные – если про группы раньше и видел где-то, то сразу забыл. И тут я не просто получил ответ, но и узнал что-то новое для себя. Раньше, в случаях, когда надо использовать группы, я из-за незнания просто писал дополнительную обработку результатов регулярки C#-кодом, т.е., по сути, делал лишнюю работу.
Кстати, так как C# – объектно-ориентированный язык программирования, по умолчанию модели будут вам отвечать со всей структурой для копипаста в среду разработки – т.е. с юзингами, классами, методами и прочим. В случае с Zenno такой код подходит для блока «Общий код», но для C#-сниппетов надо удалять всё лишнее, или копипастить код только из тела методов.

Поэтому можно просто сразу просить модель давать только имплементацию или содержимое тело метода. Посмотрим на примере того же распарса «bounds».
Промпт:
Please, write code snippet that parsing integer values "x1", "y1", "x2", "y2" via C#.
Write only inner statements without method implementation.
Input string:"[90,875][989,1015]";

Ответ модели:
Here is the code snippet to parse integer values "x1", "y1", "x2", "y2" from the input string:
C#:
string[] parts = inputString.Split('[')[1].Split(']')[0].Split(',');
int x1 = int.Parse(parts[0]);
int y1 = int.Parse(parts[1]);
int x2 = int.Parse(parts[2]);
int y2 = int.Parse(parts[3]);
In this code, we first split the input string into parts using '[' and ']' as delimiters. Then we take the second part (index 1) which contains the coordinates. We split this part again using ',' as a delimiter to get individual coordinates. Finally, we parse these strings into integers using `int.Parse` method.
Раньше, когда я изучал что-то новое или был какой-либо затык, поиск решения часто приводил в stackoverflow. Теперь до этого дело не доходит, так как LLM практически всегда может сразу подсказать/объяснить требуемое + написать хороший код, при том это все более релевантно конкретно моему случаю (меньше мороки с адаптацией сторонних решений).

Если вы пишите код для Zenno в какой-нибудь IDE, как и я – существуют ещё плагины для сред разработки, такие как GitHub Copilot и Codeium. По сути, это интеграции функционала LLM прямо IDE. Лично мне они показались не очень удобными и полезными в моём случае, поэтому я ничем таким на данный момент не пользуюсь. Тем не менее, некоторые разработчики находят их полезными, возможно, они пригодятся и вам.
Да, стоит сказать, что упомянутые выше плагины проприетарные, со всеми сопутствующими минусами. Есть ещё компромиссные варианты с гибкой настройкой, пример – плагин Continue. К нему можно прокинуть любую модель на свой вкус (в том числе через тот же «LM Studio» в режиме сервера) и настроить под свои нужды. Вот этим конкретно мне например уже интересно заняться, но на момент написания статьи ещё не добрался.

Как ещё можно улучшить ответы

Несмотря на все плюшки LLM для нашего случая, есть один минус – модели либо ничего не знают о продуктах Zennolab и особенностях их использования, либо в лучшем случае такая информация у них затеряна среди тонны других данных обо всём на свете. Поэтому на вопросы сугубо по инфраструктуре Zenno, документации и API модели будут отвечать в лучшем случае посредственно. Однако, существуют способы «прокачать» модели так, чтобы они учитывали базу знаний по Zenno, могли отвечать развёрнуто именно по ней.
Соответственно, под конец немного поговорим о двух таких способах.

RAG (Retrieval Augmented Generation)

Этот метод представляет собой возможность дать доступ модели к вашей базе данных, чтобы она при ответе на запросы использовала соответствующие знания. Как именно это примерно работает.
  1. Надо собрать кучу релевантных документов (почти сколько угодно много) – например, всю документацию и справку Zenno, документацию макросов, все технические статьи с форума, все полезные топики и сообщения с форума (ну или вообще все).
  2. Далее это всё надо нарезать на небольшие кусочки текста (chunks) и скормить специальной модели-эмбеддеру, которая переведёт всё это добро в векторную базу данных. Все данные будут там хранится в виде эмбеддингов (векторов) – в сравнительно компактном виде, и при этом понятном, «родном» для LLM.
  3. При запросе к LLM текст промпта будет сначала преобразован в вектор, и по векторной БД будет произведён поиск наиболее близких (релевантных) данных/документов. Вектор запроса + найденные в базе вектора объединяются в единый промпт (вопрос + контекст) и доходят до LLM.
  4. Наконец, модель отвечает на такой запрос, используя данные контекста, т.е., например пару релевантных статей или страниц из документации ZennoLab.
Звучит достаточно просто, плюс благодаря готовым и простым в использовании решениям (например, библиотека LangChain для Python), собрать этот пайплайн можно быстро и просто. Однако, на деле, чтобы получить нормальный ответ, а не чушь, почти наверняка придётся очень потрудиться.
Почему:
  • Очень важно, насколько хорошо база знаний будет нарезана на куски. Если пользоваться простыми автоматическими «нарезателями», то качество знаний и связий между ними в базе векторов будет очень и очень посредственное, что сильно повлияет и на ответы. В идеале надо осмысленно (с хорошим пониманием того, как это работает) в ручном или полуручном режиме нарезать исходные документы на чанки. В базе могут быть сотни и тысячи документов (в нашем случае страниц в документации, статей и сообщений на форуме), т.е. для хорошего результата это достаточно много работы.
  • Даже если вы отлично нарезали базу, много ещё зависит и от модели-эмбеддера, которая будет «оцифровывать» чанки в векторную БД. Большинство имеющихся моделей заточено на данные на английском языке. Конкретно под русский есть, но насколько они проигрывают передовым на английском – вопрос. Плюс, с одной моделью у вас может получится результат лучше, чем с другими, и заранее неизвестно, какая именно модель-эмбеддер сформирует базу конкретно в вашем случае.
Помимо этих моментов, есть и иные особенности, это оставим для личного изучения.
Резюмируя – RAG инструмент потенциально очень мощный, но для хорошего результата обычно требует значительное количество усилий.

Fine-tuning (дообучение).

Файн-тюнинг по сути своей представляет дообучение изначальной модели на вашем специализированном датасете. На данный момент существует достаточно много видов и подходов к файн-тюнингу. Плюс к тому, большинство открытых специализированных моделей, размещённых на том же HuggingFace – это именно файн-тюны Llama и других открытых LLM.

В нашем случае для файн-тюнинга модели надо собрать датасет по требуемой базе знаний – то есть взять те же документацию Zennolab, статьи и прочее с форума, и соорудить из них датасет, пригодный для дообучения.
Далее надо будет дообучить исходную модель на этом датасете, для этого скорее всего понадобиться покупать GPU-часы у какого-нибудь провайдера серверов со специализированными GPU. Насколько долго это продлится и сколько будет стоить – зависит от исходной модели, размера датасета, метода файн-тюнинга. Но, понятное дело, в наших масштабах это будет не сильно дорогое дело, тем более ни в какое сравнение не идёт с затратами на претрейн оригинальных моделей, на который компании обычно тратят миллионы долларов.

Также вам понадобится составить свой бенчмарк для оценки ответов, чтобы сравнивать ответы моделей до и после файн-тюнинга по нашей базе знаний. К тому же, маловероятно, что с первого раза у вас получится хороший результат, и надо будет как-то оценивать все получаемые файн-тюны.
Плюс ко всему, для занятия файн-тюнингом в идеале иметь компетенции в Machine Learning (ML), так как соответствующих нюансов при дообучении моделей хватает.
Резюмируя – с помощью файн-тюнинга можно получить специализированную модель-ассистента, которая, по сути, будет прекрасно ориентироваться в базе знаний Zenno и давать шикарные ответы по теме, но для хорошего результата почти наверняка понадобится временных и финансовых затрат ещё больше, чем для хорошей реализации RAG.

Как итог, что RAG, что Fine-tuning – крайне мощные и перспективные инструменты для «заточки» моделей под специфическую сферу знаний по типу экосистемы Zenno. Однако, когда речь идёт об одиночном разработчике шаблонов для Zenno – это скорее избыточные инструменты ввиду большого объёма трудозатрат. Но для организованных команд разработчиков или Zenno-энтузиастов, а также самой компании Zennolab – думаю, вполне посильная и имеющая смысл задача. Возможно, в будущем кто-нибудь сделает что-то подобное конкретно под Zenno. Если, конечно, до этого не появится какой-нибудь AGI, который за счёт своей продвинутости сделает неактуальным все эти вещи (или просто убьёт нас всех :D).

Всем огромное спасибо за внимание! Успехов вам как на поприще Zenno, так и в обычной жизни. :-)
 
Последнее редактирование:

demiddima

Client
Регистрация
06.06.2023
Сообщения
30
Благодарностей
69
Баллы
18
Отличный гайд для входа в тему практичного использования LLM моделей. Теперь хоть весь расклад понимаю, а то обрывками было про какие-то gpt, llm, промт, цукер и т.д.
 
Последнее редактирование:
  • Спасибо
Реакции: LaGir

radv

Client
Регистрация
11.05.2015
Сообщения
3 788
Благодарностей
1 952
Баллы
113
Отличная статья. :ay: А модели поддерживают только английский язык или русский тоже понимают?:-)
 
  • Спасибо
Реакции: LaGir

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
Отличная статья. :ay: А модели поддерживают только английский язык или русский тоже понимают?:-)
Большинство свежих открытых моделей неплохо умеют понимать русский и отвечать на нём, просто надо учитывать, что в среднем на английском результаты будут лучше. Собственно, объяснение этому упоминал в статье:
Выше я привел примеры фраз на английском языке, но мы же собираемся задавать вопросы на нашем языке? На самом деле крайне желательно писать промпты именно на английском, в большинстве случаев это даёт лучший результат. Все модели лучше всего понимают и отвечают на английском языке, даже если учились на множестве других тоже. Это актуально для любых моделей просто потому, что во всех трейнинг-сетах данных на английском большинство, просто потому что данных в мире интернете подавляющее большинство именно на этом языке. Даже китайские модели, тренируемые для использования на внутреннем рынке, ныне всё ещё лучше работают на английском, чем на китайском.

У опенсорс-моделей этот гэп значительно больше, чем у передовых закрытых. Соответственно, в среднем промпты даже на корявом английском будут давать лучше результаты, чем на хорошем русском. Поэтому если вы не знаете языка, имеет смысл закидывать в переводчик свой промпт и скармливать модели именно перевод, а потом переводить ответ. Тут, кстати, можно использовать саму модель в качестве переводчика (главное, перевод на вход делать отдельным чатом, или же стирать его изначальную формулировку на своем языке).
Но так пользоваться вполне можно и на русском. Иногда бывает что-то типа "багов", когда модель на русский промпт решит ответить на английском, или будет сопротивляться просьбе отвечать только на русском. Или, бывает, в ответах начинают проскакивать словечки на английском (почти как в известном меме х)). Но в целом это редкость, можно спокойно пользоваться.
Кстати, есть семейство файн-тюнов под названием "Сайга", заточенные именно под использование на русском языке. Слышал, что обходят в этом плане даже закрытые яндексовские и сберовские модели (сам не тестил). Страничка актуальной модели на базе Llama3 на HF:
 
  • Спасибо
Реакции: radv

tsup

Client
Регистрация
07.10.2018
Сообщения
74
Благодарностей
47
Баллы
28
Привет. Пробежался по тексту - гайд действительно отличный! Хочу немного дополнить:

1. Если вдруг кому-то не понравится LMStudio - попробуйте GPT4All. Полностью бесплатный и Open-Source проект. API также присутствует.
2. В статье были упомянуты Mac на процессорах m1 и выше. Хочу немного дополнить: для LLM даже у самого дешёвого Mac на m1 скорость работы - почти на уровне RTX 2060. Так что, возможно, в некоторых ситуациях имеет смысл брать Mac Mini m1 с авито за ~40к рублей, а не собирать ПК с средней видеокартой.
 
Последнее редактирование:
  • Спасибо
Реакции: demiddima, LaGir и radv

Ylvov

Client
Регистрация
23.01.2017
Сообщения
91
Благодарностей
15
Баллы
8
А чем все это отличается от просто использования GPT4o ?
 

Moonwalker

Client
Регистрация
16.03.2016
Сообщения
1 630
Благодарностей
1 225
Баллы
113
Как минимум, локальностью, бесплатностью (условно, если не считать железо и электричество) и анонимностью (с оговорками, учитывая софт). А то вдруг ты супер-пупер-тему придумал, пообщался с GPT, а они взяли и слили (или себе взяли) ))
 
  • Спасибо
Реакции: LaGir

Ylvov

Client
Регистрация
23.01.2017
Сообщения
91
Благодарностей
15
Баллы
8
Как минимум, локальностью, бесплатностью (условно, если не считать железо и электричество) и анонимностью
Да, но все это не имеет значения если по "умности" проигрывает в тестах новому GPT4o
 

inilim

Client
Регистрация
16.09.2017
Сообщения
446
Благодарностей
170
Баллы
43
Aliexpress уже продает сборки для llm? Без видеокарты, очень интересна сборка без видеопамяти.
 

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
1. Если вдруг кому-то не понравится LMStudio - попробуйте GPT4All. Полностью бесплатный и Open-Source проект. API также присутствует.
2. В статье были упомянуты Mac на процессорах m1 и выше. Хочу немного дополнить: для LLM даже у самого дешёвого Mac на m1 скорость работы - почти на уровне RTX 2060. Так что, возможно, в некоторых ситуациях имеет смысл брать Mac Mini m1 с авито за ~40к рублей, а не собирать ПК с средней видеокартой.
Благодарю за дополнения!

Конкретно по макам тоже тогда чутка дополню.
Маки на процессорах M* хороши для инференса моделей в том контексте, что у них используется высокопропускная память HBM. Причём она общая, то есть в прикладных задачах может выступать как оперативная, так и как видеопамять. Скорость у неё сравнима с привычной видеопамятью (GDDR*), поэтому и скорость ответов от LLM на уровне использования с видеокартой.
Проблема на маках только с объёмом этой самой памяти. До сих многие с 8 ГБ идут, а разрыв с ценником за 16 и выше - как правило приличный.
Соответственно, если условно дешёвый мак на 8 ГБ - особо на нём моделек не позапускаешь, только самые мелкие - и при этом не забываем, что память общая, там ещё система и другой софт сколько-то места из этих 8 ГБ занимают.
С 16 и 32 ГБ дела уже куда лучше. Но вот позиционировать их как машинку для инференса локальных моделек, ну чёт дороговато, имхо :-) Но! Если этот мак одновременно ваша основная рабочая машинка - то всё прекрасно.
PS: Ну а так, о потребительских видюхах в статье упомянул отчасти потому, что немало людей сидят на системах с затычками или на APU (процессорах со встроенных ядром), или же имеют "домашний сервер". Т.е. если вдруг тема локальных инференсов кому-то окажется выгоднее облачных решений после всех расчётов - можно просто докупить карточку. Во всяком случае, сам так сидел, и отчасти именно в таком амплуа мне дискретная карточка пригодилась.)
 
  • Спасибо
Реакции: tsup

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
А чем все это отличается от просто использования GPT4o ?
Вступление к статье буквально об этом:
Акцент будем делать на использовании опенсорсовских LLM, которые можно просто запустить на своём компьютере или сервере. Причины выбора такого акцента:
  • Приватность (не отправляем никакие данные сторонним организациям)
  • Низкая стоимость вычислений (платим, по сути, только за электричество, если запускаем на своём железе)
  • Меньший уровень цензуры (при соответствующей необходимости)
Передовые LLM, такие как GPT и Claude, конечно, существенно «умнее» существующих на данный момент опенсорсовских решений, но и ограничения у них соответствующие. Уверен, далеко не каждый разработчик шаблонов готов на бенефиты от использования ИИ-ассистента, если обратная сторона – необходимость отправлять контекст своих задач и проектов в сторонним людям/компаниям. Для некоторых задач могут понадобится большие объемы токенов, что может вылететь опять же в копеечку, в сравнении с локальным опенсорсом.

Плюс к этому, даже если вы используете LLM только для генерации текстового контента, открытые модели так же весьма интересны в точки зрения себестоимости и меньшей зацензурированности.
Да, но все это не имеет значения если по "умности" проигрывает в тестах новому GPT4o
Соответственно, всё зависит от задач конкретного человека. Где-то, как и вам, для всего нужна (или достаточна) GPT-4o, а где-то, например, вполне достаточно уровня условной GPT-3.5, где-то приватность важнее всего остального, и так далее.
Лично я пользуюсь и платными-облачными, и локальными, выбирая исходя из конкретной задачи, и в какой области приоритет по ней.

PS: кстати, в моих юзкейсах ответы GPT-4o мне куда меньше нравятся, чем апрельской GPT-4Turbo.( Надеюсь, "новые передовые модели" из их пасхалки с последней презы действительно будут скоро представлены.
 

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
Aliexpress уже продает сборки для llm? Без видеокарты, очень интересна сборка без видеопамяти.
Вот прям сегодня такое лично мне крайне сложно представить х)
По множеству причин. Но что будет в будущем, посмотрим)

Без видеопамяти в любом случае выглядит сомнительно, на мой взгляд.
Хотя, опять же, зависит от деталей и хотелок. Находятся люди, которые запускают масковский Grok в оперативке - т.е. на серверах с сотнями гигов оперативки х)

Чисто моё имхо - ответы при использовании оперативки и CPU ну очень долго генерятся, и чем больше модель, тем всё ещё хуже становится в этом плане. Для тестов себе докупал 128 GB, так как было интересно "пощупать" модельки покрупнее. В итоге разочаровался, и из локальных последнее время пользуюсь только теми, чьи квантованные версии полностью умещаются в видеопамять.
 

seodamage

Client
Регистрация
08.09.2014
Сообщения
224
Благодарностей
67
Баллы
28
@LaGir привет, как запустить апи на 0.0.0.0 ?

upd получилось через туннель, а нельзя как то через конфиг влепить чтобы слушал на всех интерфейсах?
122188



появился ещё 1 вопрос: как сделать чтобы он давал полный ответ? сейчас он почему то отвечает по частям в разных json'ах
то есть берёт ответ, разбиает на слова или даже слоги, и на каждый слог делает ответ в формате json
upd: надо поставить в запросе
C#:
"stream": false
 
Последнее редактирование:
  • Спасибо
Реакции: LaGir

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
@LaGir привет, как запустить апи на 0.0.0.0 ?

upd получилось через туннель, а нельзя как то через конфиг влепить чтобы слушал на всех интерфейсах?
Судя по тому, что нашёл оф. дискорде LM Studio, там сейчас нет поддержки нормальных конфигов и 0.0.0.0 (когда будет, и будет ли, инфы нет).
Если такое надо, направляют пилить сервер напрямую на llama.cpp (то, что под капотом LM Studio), вроде как вот релевантные доки.
 

seodamage

Client
Регистрация
08.09.2014
Сообщения
224
Благодарностей
67
Баллы
28
Судя по тому, что нашёл оф. дискорде LM Studio, там сейчас нет поддержки нормальных конфигов и 0.0.0.0 (когда будет, и будет ли, инфы нет).
C#:
LM Studio.exe" --host 0.0.0.0 --port 7787
122207


+запустить на этом порту
122209



+ разрешить в брендмауэре этот порт
122208



после этого у меня заработала апиха в туннеле, без туннеля не проверял, там щас не проверить без него
 
  • Спасибо
Реакции: izubr и LaGir

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
Прошёл уже месяц с публикации статьи, за это время много чего успело произойти в мире LLM-ок. Некоторые полезные новости в контексте статьи опишу в этом посте.
1. В рейтинг чатбот-арены добавили новые категории, в том числе по ряду языков. Теперь можно выбрать категорию "Russian" и глянуть топ рейтинга именно на русском языке.
2. Вышло несколько опенсорсных моделек, также довольно хорошо понимающие и разговаривающие на русском. Вот несколько примеров: Phi3 Medium, aya 23, Yi 1.5, Qwen2.
Судя по отзывам в сети, на русском они либо лучше упоминаемой llama3 в статье, либо как минимум не хуже.
3. Появились новые классные опенсорсные модельки для задач программирования.
Codestral - 22B параметров, первая модель по кодингу от Mistral.
Deepseek Coder V2 (236B) и Deepseek Coder V2 Lite (16B). Старшая модель, судя по бенчмаркам, в задачах программирования выступает на уровне передовых моделей GPT, Claude и Gemini. Правда, локально такого размера модельку особо не позапускаешь - но у DeepSeek она доступна по API по весьма демократичным ценам.

Ещё момент. В видео к статье упоминал, что децензурированные модельки можно искать по ключевому слову "uncensored". Недавно узнал о технике децензурирования под названием "abliteration", которая даёт очень хорошие результаты без ощутимых потерь по качеству. Соответствующие модели можно искать на HF по ключевику "abliterated", а почитать о самой технике - тут.
 

diman

Client
Регистрация
18.02.2018
Сообщения
98
Благодарностей
15
Баллы
8
Подскажите есть ли подходящий хостинг для LM Studio?
 

Serj566

Client
Регистрация
09.05.2016
Сообщения
56
Благодарностей
80
Баллы
18
Вкину свои 5 копеек, как вариант можно еще использовать https://ollama.com/, простая в установке, работает стабильно. Возможна работа на CPU, без видеокарты. Есть под macOS, Linux и Windows.

По API читайте инструкции:

И да, модели искать и подготавливать тоже не нужно, можно посмотреть подготовленные и получить команду для простого запуска тут: Models

Кому нужен Web интерфейс для удобства управления: https://github.com/open-webui/open-webui
 
  • Спасибо
Реакции: LaGir

Gavrosh

Client
Регистрация
08.10.2016
Сообщения
65
Благодарностей
21
Баллы
8
Может кто привести пример, как отправлять запросы с зеннопостера к lmstudio по api.
 

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
Может кто привести пример, как отправлять запросы с зеннопостера к lmstudio по api.
1. Запускаем сервер в LM Studio
2. Отправляем обычный POST-запрос, в теле помещаем json с нужной информацией (формат и прочее указаны в документации)
Таймаут лучше увеличить, на случай если ответ генерится долго (в зависимости от модели/железа)
Параметр 'stream' выключить, чтобы весь ответ пришёл сразу целиком после генерации.

2024-07-05_02-05-21.png
3. Парсим ответ (в ответ на POST-запрос придёт json, из которого парсим нужное любым удобным способом)


PS.
На всякий случай дополнительно упомяну, что LM Studio в статье приводится главным образом как софт, с которым легче всего "въехать" в эту тему и использование локальных моделек прям с нуля. Пощупать, потестить основные возможности, так сказать.
Для более широкого круга юзкейсов, например, для того же хоста моделек где-нибудь на у себя на удалённых серверах - лучше использовать что-то другое, LM Studio в этом контексте вариант уже не особо подходящий.
Как уже отписались выше, Ollama в этом случае весьма хороший вариант, там куча интеграций готовых уже есть, в сети и ютубе есть готовые инструкции, как сделать что-то конкретное.
Ещё из хороших аналогов для таких задач, например, есть koboldcpp, llama.cpp, oobabooga.
С этими инструментами в начале придётся побольше повозиться, чтобы настроить всё, но и возможностей у них куда больше для любых рабочих задач в связке с шаблонами на Zenno.
 
  • Спасибо
Реакции: Dmitriy Ka и Gavrosh

LaGir

Client
Регистрация
01.10.2015
Сообщения
227
Благодарностей
927
Баллы
93
Прошло три месяца с предыдущего мини-апдейта, но, в принципе, за лето не так много прям интересного произошло касательно LLM-ок, на мой взгляд. По крайней мере, как будто больше интересностей было в сфере GenAI среди нейронок, генерящих изображения и (особенно) видео. (о них писать не буду, т.к. это уже отдельная тема)
Тем не менее, среди открытых LLM-ок появились следующие интересные:
1) для использования на русском языке: Llama 3.1, Gemma 2, Mistral NeMo.
2) для задач кодинга: Yi Coder.

Кстати, если вы пишете код (или хотя бы регулярно пишете сниппеты для своих шаблонов) и вас интересует, как именно ИИ может помочь в этом отношении - вот тут крайне много полезностей собрано в одном месте.

В статье и прошлом посте упоминалась чатбот-арена - появился её аналог конкретно под модельки с поддержкой русского языка. Моделей там пока мало, но зато есть сайги, а также те самые нейросетки от яндекса и сбера, т.е. хоть как-то и с чем-то их можно сравнить на русском языке более обстоятельно.

Из передового опенсорса летом появилась Llama 3.1 на 405B параметров, с результатами в бенчах на уровне фронтирных закрытых моделей. Однако, из-за её размеров (и соответствующих затрат) решение точно не "домашнее" (т.е. скорее для бизнеса).
Тем не менее, если хочется просто пощупать - в сервисах, которые инференсят её и предоставляют доступ по API, она довольно дешёвая.
Вообще, именно в плане цен за последние месяцы очень приятная тенденция вырисовывается. Токены на передовые модели стоят очень дешёво (Claude 3.5 Sonnet, GPT4o, Gemini 1.5 Pro), прям существенно дешевле чем предыдущие топы в лице GPT4 и Claude 3 Opus. Это позволяет и мотивирует больше делать экспериментов и прочих интересных штук, а также осваивать многообещающие концепции типа мультиагентских сеток.
Правда, сегодня OpenAI анонсировали и частично выкатили новое семейство моделей o1, которые заточены под задачи reasoning (простыми словами - на умение в логику, сложные рассуждения и всё такое). И ценник на них в API как раз немаленький, а в подписке лимиты аж в 30 и 50 сообщений в (!) неделю. С другой стороны, эти модели по известной на момент написания поста информации и тестам выглядят скорее специализированным решением (для сложных задач), а не нейронками для всего-всего, как текущий фронтир.
 

Кто просматривает тему: (Всего: 4, Пользователи: 0, Гости: 4)